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THEOREMS OF CONVERGENCE FOR MINIMAL SEQUENCES
IN LIMIT ANALYSIS

P. VILLAGGIO

Istituto di Scienza delle Costruzioni, Universita di Pisa (Italy)

Abstract--Some fundamental existence and uniqueness theorems for the minimum of non-linear functionals
are extended to limit analysis, The convergence of the Ritz Method is then examined, in particular: (a) conditions
under which the approximations constitute a minimizing sequence; (b) stability of the numerical method;
(c) estimate of the degree of convergence, An example of a finite-dimensional system illustrates the main results.

1. INTRODUCTION

ALTHOUGH many recent papers have been dedicated to the construction of kinematically
admissible rate-fields in applying the upper bound theorem of limit analysis either for three
dimensional bodies or for structures, the interest of justifying theoretically the legitimacy
of such methods and of estimating their degree of convergence, seems not to be large at
present.

In spite of that similar questions possess a now classical formulation for linear boundary
value problems both with regard to the existence of the minima (see e.g. Weinberger [15]
and Mikhlin [7]) and as to the convergence of the minimal sequences (see e.g. Mikhlin [7],
Chapter III and Synge [14]). In more recent works by Mikhlin [9], [10] these results are
extended to non-linear functionals connected with finite plasticity, in which those express­
ing the plastic power of the limit analysis can be mentioned.

This paper deals with the essential points of the variational problem for such functionals,
i.e. the existence of the minimum, the convergence of the Ritz method, the estimation of the
error of approximate solutions and the numerical solution of non-linear Ritz systems. All
these results are applications of other more general considerations of Mikhlin [10]. A
useful conclusion resulting from the treatment of non-linear functionals is that the exist­
ence and uniqueness of solution can be expected only for work-hardening solids. This
fact was established on the basis of different considerations also by Koiter ([5], 5.4).

2. DEFINITIONS

We consider the limit analysis of a body V whose surface B is composed of two parts:
B 1 , on which velocities are zero; B 2 , on which the surface tractions T are prescribed. The
material is supposed to be rigid-work hardening, characterized by a convex resistance
domain.
. If T are the loads of incipient plasticization, we denote by S the actual stress and by
E the strain rate fields in the limit state, the latter deriving from a velocity field v. At the
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beginning of the plastic flow, S reaches the yield surface of equation (see Jaunzemis [3].
p. 21):

(2.1 )

(2.2)

where

t: p = j(~) { J[tr(EE)] dT

is the so-called equivalent strain, depending on the strain-path and the total plastic distor­
tion (see Hill, [2J, Chapter II, p. 3). H(£p) is supposed to be a monotonically increasing
positive function of its argument.

Then, observing that on the yield locus and with the von Mises criterion:

S = J(~) J[t;EE)]E,

we obtain the plastic power density:

tr(SE) = J(~) HJ[tr(EE)].

The total plastic power is given by the functional:

<l>(v) = Iv tr(SE) d V.

We denote again by (T, v) the power of the external loads, according to the equation

(T, v) = f. Tv dS,
8 2

(2.3)

and finally by Ilvll the norm of v, that is:

IIvl1 2 = (v, v).

If the external loads T depend proportionally according to a parameter ), on an assigned
distribution To, it is well known (see Prager and Hodge [12J) that the value of Ie which
determines the beginning of the plastic flow is the solution of the following minimum
problem:

, . <l>(v*)
It = mm~--

(To,v*)'
(2.4)

in the class of E* kinematically admissible functions, that is deriving from a velocity field
v*, which satisfies the boundary conditions on B 1 , such that tr(E*) = 0 (incompressibility
condition) and such that (To, v*) > O.

A further formulation which is frequently more convenient is that of minimizing the
functional <l>(v*) under the additional condition

(2.5)

in the same class of functions.
We successively demonstrate the existence ofa minimum for the problem (2.4), specifying

in which class of functions and under which conditions this research must be placed
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(Section 3); we examine the method of constructing the minimizing sequences and of
estimating the error as to the exact solution (Sections 4 and 5); we discuss some methods
to solve numerically the non-linear problem, supplying a numerical example (Section 7).

3. EXISTENCE OF THE MINIMUM

As one proceeds in the linear problems (see Mikhlin [9J, p. 3) we consider the real
completet Hilbert space of square summable functions in V endowed with the norm:

(3.1)

which is also called the energy norm. For the elements of this space which are kinematically
admissible the inequality

Ivl ~ yllvll, (3.2)

(3.3)

where y is a positive constant, must be valid.
As Mikhlin [9J has demonstrated, if the non-linear functional <1>(v) can be placed in

the form:

r rtr(EEl
<1>(v) = J

v
dv J

o
p(~)d~

where in the interval 0 :$; ~ < 00 the inequality p(O ~ Po > 0 is valid, then the related
inequality,

(3.4)

assures that:
(a) the functional <1>(v) is bounded from below;
(b) every minimizing sequence converges in the metric (3.1) to some limit;
(c) the convergence in energy implies the convergence in norm.
Now, the equivalency of the two forms (2.3) and (3.3) is assured putting:

p(~) = ~ J(~) (H + J7~)) (3.5)

where Hdenotes the derivative of H with respect to the variable J[tr(EE)]. But, among the
usual laws of hardening, H has a minimum Hot, whence, assuming

1 / 2 •
Po = Pmin(~) = 2V b)Ho,

the validity of (3.4) is demonstrated. From this consideration derives also that p(~) is a
monotonically decreasing function of its argument.

t If the space is not complete it is necessary to complete it (see Weinberger [14]).
t More precisely we can write:

. dE p

H = tgPPdJ[tr(EE)]

where tg Pp is the plastic modulus of a uniaxial state of comparison (Reckling [13]. Chapter III. p. 9).



836 P. VILLAGGIO

4. THE RITZ METHOD

The Ritz method is used for constructing a minimal sequence for <I>(v). For this purpose
we select a sequence of elements

(4.1 )

satisfying the two conditions:
(a) for any n, the elements are linearly independent:
(b) the coordinate system is complete and possibly orthonormal in energy:

and we give an approximate solution Vn of problem (2.4) in the form:

(4.2)

where the!X k are constants selected so that <I>(vn ) is a minimum with respect to the parameters
!Xb with th~ additional condition:

(4.3)

The solution of this problem is an algebraic matter leading to a non-linear Ritz system
treatable for instance by the iterative Kachanov method (Mikhlin [10], 3, 10.4).

The calculation of the coefficients !X k may be effected considering the functional:

(4.4)

where i'n is a suitable Lagrange multiplier. By integration with respect to the coordinate
function Ub we obtain from (4.4) the function:

(4.5)

having denoted by the vector a. == (et[, . . , ,!Xn ) the set of the independent variables and by
T == (T[, ... , T,,) the vector with components T[ = <To, u[), ... , T" = <To, un)' The
explicit form 0[\1I(a.) is given by (3.3), that is:

'P(a.) = Iv dl' If, ';'jrrIE,F:,1 p(~) d~, (4.6)

where E; is the deformation rate tensor associated with U;. Setting the partial derivatives
of (4.5) equal to zero, we derive the non-linear system:

grad 'P(a.)-i.nT = 0 or 'P'k(a.)-An1k = 0

which, with the normalizing condition:
n

a. . T = 1 or I!Xk 1k = 1,
k= [

(k = 1, ... ,11), (4.7)

permits the calculation ofa. and An'
We can prove that a., so constructed, is an effective minimizing sequence for <I>(v).

M onotonicity
Increasing the components of a. the minimum of 'P(a.) cannot increase: therefore the

sequence of 'P(a.) is monotone and non-increasing with n(Monotonicity principle of
Weinberger [15]).
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Convergence

Ifvo is the exact solution minimizing <l>(v), it is possible to choose such an index n and a
vector Wn that the inequality

(4.8)

is valid. In fact from:

applying the mean value theorem we deduce:

(4.9)

where p* is the maximum of p between tr(EoEo)and tr(EnEn), whence by the decomposition:

tr(EnEn)- tr(EoEo) = tr[(En+EoHEn - Eo)J,
and Schwartz's inequality, it follows:

with

But, as the system Uk is complete in energy, from Iwn-vol --.0 and K(wn , Yo) is boundedt,
inequality (4.8) holds (Mikhlin [7J, Section 14). On the other hand, by the way of con­
structing <I>(vn), as a minimum among all the n-dimensional functionals, we have
<I>(vn) :s; <I>(wn) and whence <I>(vn) --. <I>(vo)·

Stability

By immediate extension of the notion of stability for the linear Ritz system (Mikhlin
[8J, [9J, 7.4), we can say that the non-linear system (4.7) is stable with respect to small
variations in its coefficients and free terms, if these determine changes of the same order
in the solutions (J.k' This propriety is assured if the smallest eigenvalue of the matrix

Rn = grad(2) '¥(cx)

is bounded from below by a positive number independent of n. But such a condition is
implied in equation (3.4), whence moreover one can deduce the inequality

(R.cx,cx) 2 2Pollcxl1 2
,

and, therefore, that 2po is a lower bound, independent of n, for the first norm of Rn.t

(4.10)

tWe can easily verify that K(w., vol is bounded in the class offunctions with finite energy.
:I: In fact, from inequality (3.4) written for v. = Lj <%1U1 and Ol = Olo + SOl" where e is an infinitesimal parameter,

we obtain:

whence expanding the left-hand side in Taylor's series and comparing the terms of the same order in e we derive
(4.10).
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5. DEGREE OF CONVERGENCE (MIKHLIN [10], 5)

The preceding results allow us to make an estimate of the order of accuracy of the
approximate solutions when only the first n terms of series (4.2) are taken into account.
In fact, if IX is an n-dimensional vector satisfying equation (4.7), and the normality condi­
tion:

L !)',k7k = I,
k= 1

an upper bound of the absolute minimum is given by:

i'n = 'P(IX). (5.1)

Now, for completeness, the absolute minimum )'0 can be expressed by 'P(1X0), where 1X0
is a suitable infinite-dimensional vector normalized by the following condition:

But as 'P(IX) is a convex function of its argument and 'P(1X0) its minimum, the inequality:

'P(IX) - 'P(1X0) ~ grad 'P(IX) . (IX -1X0),

or equivalently

An - )'0 ~ L 'P,k(IX)(!)',k - !)',Ok),
k =!

(5.2)

must be valid. Moreover equation (4.7) gives:

'P,k(lX) = An 7k (k = I, ... ,n),

therefore the inequality (5.2) permits us to write:

I)'n-Aol ~ IAni I' ±7k(!)',k-!)',Ok) I = IAni 1 f !)',Ok7k
k=! k=n+!

(5.3)

From this last inequality derives, beside the convergence, also an estimate of the nth
approximation, ifit is possible to bound the Fourier coefficients 1X0k ' as it is often the case.t

6. PERFECTLY RIGID-PLASTIC SOLIDS

Some special considerations have to be introduced for rigid-perfectly plastic solids,
because the hardening factor tgf3p is zero, whence Po is zero and inequality (3.2) is no longer
valid. Now, the functional (3.3) is not coercive and the convergence in energy does not
ensure the convergence in norm. Also the application of the Ritz method is no longer
possible, because the functional (3.3) may not be convex.

However, the two principal circumstances that justify the reduction to finite dimension
of the problem remain valid; they are monotonicity and convergence, the former depending
on the increase of dimension, the latter on an inequality of the type (4.9). Of course, the

t See e.g. Kantorovich and Krylov [4J 1.5.
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uniqueness of a minimizing solution cannot be expected (see Koiter, [5]). This degenerate
case requires the particular device of considering the perfectly rigid-plastic material as a
limiting model of a rigid-work-hardening materiaI.t

7. EXAMPLE: HOOKE-eOULOMB MODEL

An illustration of the previous results is given by the limit analysis of the mechanical
model with two degrees of freedom depicted in Fig. I. The solid M can translate on its

FIG. I.

supporting plane when the force P overcomes a limit value So. After the beginning of
motion the rates of displacement qt, qz are constrained by the springs with elastic constants
k t , kz· The plastic power is expressed by t:

<1>(q) = SoJ(qi+q~)+i<ktqi+kzq~), (7.1)

while the power of the external load P, put equal to 1, is !Xtqt + !Xzqz, where !Xt, !X z are the
direction cosines of P. Problem (2.4) can now be formulated as:

under the condition:

<1>(q) = min, (7.2)

(7.3)

This is a problem of the ordinary minimum and so the existence of a unique solution is
warranted by inequality:

IqlZ = klqi+kzq~~ y(qi+qD = Yllqf
where)) is min(k l , kz), and by inequality:

1 f.' QI2( Sollqll) z
<1>(q) =:2 0 1+J(~)lql d~ ~ Polql

with Po = 1·

(7.4)

(7.5)

t This way of formulating the problem is the mechanical equivalent of the so-called "elliptical regularization"
for non-coercive functionals (see Lions and Stampacchia [6]). Analogous techniques are also applied by Fox [1].

t We have denoted by q the vector (qt, q2)'
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(7.8)

To follow the scheme of the Ritz method, we approximate the exact solution in two
ways:

I. Choosing q(I) = (qI' 0) as approximation of the effective configuration of collapse,
the substitution in (7.2), (7.3) gives immediately:

(1) So I<I>(q ) = --+--ikI (7.6)
I!XII 2!XI

which is of course an upper bound of the true collapse load.
II. Putting now q(2) = (q I' q2) we minimize (7.2) under condition (7.1) by the above­

mentioned Kackanov method (Mikhlin [1OJ, 3, lOA). The calculation is made in
two steps:
(1) Assuming in (7.5) p(e) = Po = !, the functional (7.5) is reduced to a quadratic

one, whose constrained minimum is reached for:

!Xdk I !X21k2q - ---.~- q - (7.7)
1 - (!Xilkd+(!X~/k2)' 2 - (!Xilkd+(!X~/k2)

(2) We set afterwards in (7.5) p(e) = PI = t+Sollq(2)III/q(2)1, where q(2) has com­
ponents (7.7), and we calculate the minimum of this new quadratic functional.
Since from (7.7) we derive:

(
2 2) ~ I (2 2) - I I( 2 2)

Iq(2)1 2 = !Xl + !X2 Ilq(2)11 2 = ~+ !X 2 / ~~+ !X~ ,
k i k2 k i k2 V ki k2

the minimum of the functional so modified is attained for the same pair (7.7)
and the equation holds:

[
1

I( 2 2)~ (2 2) -1(2) _ !Xl !X2 !XI!X2
<I>(q ) - 2+So~ ki+i0 k~+k--;

Remark I. The stability of the numerical solution of steps (l), (2) follows at once from
condition (4.10), because the smallest eigenvalue of the matrix:

gmd'" <l>(q) ~ rk, +s".b(qi+qj)~ ,j[(qitlljj) - s";.m~I1~~)3Jl
l -So J[(qqi~12qD3J k2+So(~7(q;+q~)-J[(qiq!q~)3-j)

is bounded from below by '}' = min(k l' k2)·

Remark II. As far as the convergence of the approximate solutions is concerned, we
apply formula (5.3) to the first trial function of the Ritz method. Since the second approxi­
mation gives the true minimum, all terms in (5.3) are known, and we can write:

(7.9)

where Al is given by:

, (!Xi !X~) (!Xi !X~)-I
Itl = 1+2So ki+k~ k

i
+k2

is the Lagrangian multiplyer of problem I; moreover, since !X02 = q2' from the second
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equality of (7.7) and T2 = 0:2, we obtain

[ (
1J(2 0:2)(1J(2 0:2)-IJ 1J(2/k

IAt-Aol:-:;; 1+2So ki+d k:+k: (o:Vkdt+(:~/k2)'

as an upper bound of the error of the first approximation.
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A6cTpaKT-PaCWf1pafOTClI HeKOTopble cjJYHnaMeHTanbHble TeopeMbl cywecTBOBaHf1l1 f1 OnH01Ha'lHOCTf1 ilnll
Mf1Hf1MYMa He,lf1HeHHblX cjJyHKllf10HanOB B TeOpf1f1 HecyweH cnoc06HOCTf1. 3aTeM f1CCnenyeTclI CXOilf1MOCTb
MeTona Pf1Tlla, 11 B oco6eHHocTI1: al ycnOBf111, npf1 KOTOpblX npf16_1f1lKeHf111 nafOT ilOBeneHHyfO K
Mf1Hf1MYMY nocnenOBaTenbHOCTb; 61 YCTOH'II1BOCTb '1I1CneHHoro MeTona; BI oueHKy CTeneHI1 CXOnI1MOCTf1.
npf1Mep KOHe'lHO-pa1MepHoH CI1CTeMbl I1nnfOcTpl1pyeT OCHOBHble pe1ynbTaTbl.


